水系锌离子混合电容器兼具超级电容器和电池的优点且价格低廉、安全环保被认为是最有前途的储能体系之一。不幸的是锌枝晶和寄生副反应严重阻碍了其循环稳定性和电镀沉积效率。目前研究者们开发了许多策略来解决的上述问题,如:正极材料的设计、锌阳极人工界面层、添加剂以、隔膜和凝胶电解质等。其中凝胶电解质具有显著的安全性、柔性和不易泄露等优势。同时,纤维素是地球上储量最丰富的天然聚合物由于其原料来源广、可再生和易于改性等特点,是制备凝胶电解质的理想候选者。因此,基于分子水平考虑并设计一种具有较强的机械性能、电化学性能和配位能力以实现无锌枝晶和超长循环稳定性的纤维素基水凝胶电解质面临巨大的挑战。
由中国化学会主办,中国化学会纤维素专业委员会、贵州大学共同承办的“中国化学会第3届全国纤维素学术研讨会”于2023年8月8-11日在贵州省贵阳市顺利召开。本次学术研讨会旨在交流和讨论纤维素科学与技术相关领域的前沿及最新进展,会议主题为“创新纤维素高效利用,助推双碳目标实现”,主要围绕纤维素及可再生资源高效利用在新时代促进国民经济和社会发展中的重要作用,集中展示我国纤维素科学与技术的最新研究进展和发展趋势,讨论实现纤维素及可再生资源高效利用的核心和前沿问题,有效推进纤维素与相关学科的交叉融合,为国内从事相关领域的科技、教育、产业人员和广大青年学子提供一个良好的学术与技术交流平台,促进科研成果转化。
柔性和可穿戴电子产品的出现激发了大量关于强大、可靠、低成本、具有优异电化学性能的可穿戴储能设备的研究。目前,柔性锂离子电池(LIB)和超级电容器(SC)被认为是柔性和可穿戴电子设备中两种有前途的储能设备,但是它们的功率密度和循环寿命、低能量密度很有限。为了解决这些缺点,利用电容器型电极和电池型电极结合的混合型电容器(HSC)是最有前景的提高设备能量密度的方法。锌离子混合超级电容器(ZHSC)由于其结合了锌离子电池(ZIB)的优异性能、高安全性、无毒性和丰富的锌资源等优点,被认为是最有潜力的储能器件之一。然而,由于使用不安全的水溶液电解质的限制,导致锌枝晶形成明显,副反应,阳极腐蚀,并且在日常使用中无法承受较大的机械冲击和损害,包括被撞击、撕裂、刺穿或折叠。为了解决上述问题,设计一种可扩展的、薄的、高性能的基于聚丙烯腈(PAN)和聚丙烯酰胺(PAM)的分级结构凝胶电解质,提出了一种具有高电化学功能的极其安全、灵活的准固态ZHSC。
贵州大学材料与冶金学院高分子材料与工程教研室,牢记“为党育人、为国育才”使命,以高等教育高质量发展为目标,围绕教师队伍“主力军”、课程建设“主阵地”、课堂教学“主渠道”进行教育教学改革,聚焦“党建引领,打造创新研究与教育高地”,“人才聚集,强化创新研究与教育基石”,“思政融合,把准创新研究与教育方向”,“产研结合,助推地方经济与社会发展”,以全面开拓高分子材料与工程教研室教学过程中“价值塑造、知识传授与能力培养”相统一工作新局面。教研室深化“三全育人”改革 落实立德树人根本任务成效显著,2023年全国硕士研究生入学考试,高分子材料与工程教研室再获佳绩!
欧阳晓平院士和吴义强院士在参加2023年“院士贵州行”活动之际,2023年5月23日下午,莅临贵州大学材料与冶金学院指导工作,参加材料与冶金学院高质量发展座谈会。刘其斌院长主持了座谈会。材料与冶金学院刘剑书记、贵州大学科学技术研究院吴复忠院长、教务处向嵩处长,材料与冶金学院赵飞副院长及相关教研室主任、青年教师代表30余人参加了座谈会。
利用天然聚合物开发环境友好型聚合物材料是降低聚合物工业对石油资源依赖,促进聚合物工业实现碳中和的重要途径。木质素是仅次于纤维素的第二大天然聚合物,但由于其复杂结构使其很少用于高价值产品,而是焚烧发电或作为污染物处理。人们普遍认为,利用木质素的结构特点对其进行化学改性可以显著扩大其应用范围,而接枝改性得到了特别的关注。
过氧化氢(H2O2)目前是世界上十大基础的化学品之一,是一种多功能的、环境友好的高效氧化剂。但是其传统工业生产工艺是通过蒽醌过程,这一过程需要大量的能源输入和大型基础的设施,并且存在潜在的运输和储存安全问题。因此,寻找一种廉价、节能和安全的新技术途径生产H2O2是具有重要科学价值和社会效益。电催化氧还原合成H2O2,可由可再生能源驱动,提供了一种安全、可持续、分散的解决方案。
功能高分子材料是一类非常重要的聚合物,是自然科学中应用最广泛的材料。离子液体功能化聚合物材料被称为聚(离子液体) (PILs),是由单体重复单元内的聚合物主链和离子液体(ILs)组成的聚电解质。近年来,PILs材料独特的物理性能和结构特点、离子液体的可设计性以及聚合物段丰富的PILs性能和应用能力引起了聚合物和材料科学领域的广泛关注。纤维素聚离子液体(Cellulose-PILs)是一类离子液体功能化高分子材料,具有热稳定性、不可燃性、高离子导电性、宽电化学稳定窗口、生物降解性和生物相容性等离子液体和生物基聚合物的双重特性,被广泛应用于制药、造纸、环境保护、水处理、化学传感、纺织印染工业、基因转染、药物输送、抗菌和生物医学等领域。因此,设计与制备纤维素基聚离子液体材料并对其应用研究已成为人们关注的焦点。